Cosmica

Size
London calling
Size
In the limelight
Size
Misheard lyrics
Size
Sail to the moon
Size
Everyday people
Size
Love & happiness
Size
Tangled up in blue
Size
Everlasting nothing
Size
Smells like teen spirit
Size
The cosmos, and understandings of the reasons for its existence and significance, are studied in cosmology โ€” a broad discipline covering scientific, religious or philosophical aspects of the cosmos and its nature.
Size
Eastern and Western thought differed greatly in their understanding of space and the organization of the cosmos. The Chinese saw the Cosmos as empty, infinite, and intertwined with the Earth. Western ideas, based on the ancient Greeksโ€™ understanding of the cosmos, believed in a multi-planar divided cosmos that was finite and filled with air. Europeans viewed the cosmos as a divinely created, spatially finite, bifurcated cosmos, so divided into sublunary and superlunary realms. All objects above the lunar disc were believed to be stable, with heavenly bodies believed to be made out of a refined substance called quintessence. This was understood to be a crystalline, completely transparent substance that held all of the superlunary spheres in perfect order.
Size
Theoretical astrophysicist David N. Spergel has described cosmology as an โ€œhistorical scienceโ€ because โ€œwhen we look out in space, we look back in timeโ€ due to the finite nature of the speed of light. Physical cosmology is the branch of physics and astrophysics that deals with the study of the physical origins and evolution of the universe. It includes the study of the nature of the universe on a large scale. In its earliest form, it was what is now known as โ€œcelestial mechanicsโ€, the study of the heavens. Greek philosophers Aristarchus of Samos, Aristotle, and Ptolemy proposed different cosmological theories. The geocentric Ptolemaic system was the prevailing theory until the 16th century when Nicolaus Copernicus, and subsequently Johannes Kepler and Galileo Galilei, proposed a heliocentric system. This is one of the most famous examples of epistemological rupture in physical cosmology. Isaac Newtonโ€™s Principia Mathematica, published in 1687 was the first description of the law of universal gravitation. It provided a physical mechanism for Keplerโ€™s laws and also allowed the anomalies in previous systems, caused by gravitational interaction between the planets, to be resolved. A fundamental difference between Newtonโ€™s cosmology and those preceding it was the Copernican principle โ€” bodies on Earth obey the same physical laws as all celestial bodies. This was a crucial philosophical advance in physical cosmology. Metaphysical cosmology is described as the placing of humans in the universe in relationship to all other entities.
Size
The Principia Mathematica is a three-volume work on the foundations of mathematics written by mathematicianโ€“philosophers Alfred North Whitehead and Bertrand Russell and published in 1910, 1912, and 1913. In 1925โ€“1927, it appeared in a second edition with an important Introduction to the Second Edition, an Appendix A that replaced 9 and all-new Appendix B and Appendix C. PM is not to be confused with Russellโ€™s 1903 The Principles of Mathematics. PM was originally conceived as a sequel volume to Russell's 1903 Principles, but as PM states, this became an unworkable suggestion for practical and philosophical reasons: โ€œThe present work was originally intended by us to be comprised in a second volume of Principles of Mathematics... But as we advanced, it became increasingly evident that the subject is a very much larger one than we had supposed; moreover on many fundamental questions which had been left obscure and doubtful in the former work, we have now arrived at what we believe to be satisfactory solutions.โ€ PM, according to its introduction, had three aims: One, to analyze to the greatest possible extent the ideas and methods of mathematical logic and to minimize the number of primitive notions, axioms, and inference rules; Two, to precisely express mathematical propositions in symbolic logic using the most convenient notation that precise expression allows; Three, to solve the paradoxes that plagued logic and set theory at the turn of the 20th century, like Russell's paradox. This third aim motivated the adoption of the theory of types in PM. The theory of types adopts grammatical restrictions on formulas that rules out the unrestricted comprehension of classes, properties, and functions. The effect of this is that formulas such as would allow the comprehension of objects like the Russell set turn out to be ill-formed: they violate the grammatical restrictions of the system of PM. Isaac Newtonโ€™s Principia Mathematica, published in 1687 was the first description of the law of universal gravitation. The geocentric Ptolemaic system was the prevailing theory until the 16th century when Nicolaus Copernicus, and subsequently Johannes Kepler and Galileo Galilei, proposed a heliocentric system.

About Cosmica

Cosmica is a geometric sans in a similar vein to the northern European originators of the style: Erbar-Grotesk (Jakob Erbar, 1926); Futura (Paul Renner, 1927); and Nobel (Sjoerd Henrik de Roos & Dick Dooijes, 1929). Stroke terminals are cut on the horizontal, emphasizing the geometric drawing. This is especially noticeable in C J S a c f j r s 2 3 6 9 etc. The wide weight range and inclusion of tabular and proportional numerals and true small caps makes Cosmica suitable for headline and text use for both print and screen.

Originally released 2018.01 through Constellation on vllg.com

Supported Languages

Afrikaans, Albanian, Basque, Bosnian, Breton, Catalan, Corsican, Croatian, Czech, Danish, Dutch, English, Esperanto, Estonian, Faroese, Finnish, French, Galician, German, Greenlandic, Hungarian, Icelandic, Indonesian, Irish, Irish Gaelic, Italian, Kurdish, Latin, Latvian, Leonese, Lithuanian, Lower Sorbian, Luxembourgish, Malay, Maltese, Manx, Mฤori, Norwegian, Occitan, Polish, Portuguese, Rhaeto-Romanic, Romanian, Sami, Scots, Scottish Gaelic, Serbian, Slovak, Slovene, Slovenian, Spanish, Swahili, Swedish, Tagalog, Turkish, Upper Sorbian, Walloon, Welsh

PDF Specimen

Character map
Font styleUnicode decimal32Unicode hex0020HTML entity 
Basic Latin
!
"
#
$
%
&
'
(
)
*
+
,
-
.
/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_
`
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
{
|
}
~
Latin-1 Supplement
ย 
ยก
ยข
ยฃ
ยค
ยฅ
ยฆ
ยง
ยจ
ยฉ
ยช
ยซ
ยฌ
ยญ
ยฎ
ยฏ
ยฐ
ยฑ
ยฒ
ยณ
ยด
ยถ
ยท
ยธ
ยน
ยบ
ยป
ยผ
ยฝ
ยพ
ยฟ
ร€
ร
ร‚
รƒ
ร„
ร…
ร†
ร‡
รˆ
ร‰
รŠ
ร‹
รŒ
ร
รŽ
ร
ร
ร‘
ร’
ร“
ร”
ร•
ร–
ร—
ร˜
ร™
รš
ร›
รœ
ร
รž
รŸ
ร 
รก
รข
รฃ
รค
รฅ
รฆ
รง
รจ
รฉ
รช
รซ
รฌ
รญ
รฎ
รฏ
รฐ
รฑ
รฒ
รณ
รด
รต
รถ
รท
รธ
รน
รบ
รป
รผ
รฝ
รพ
รฟ
Latin Extended-A
ฤ€
ฤ
ฤ‚
ฤƒ
ฤ„
ฤ…
ฤ†
ฤ‡
ฤˆ
ฤ‰
ฤŠ
ฤ‹
ฤŒ
ฤ
ฤŽ
ฤ
ฤ
ฤ‘
ฤ’
ฤ“
ฤ”
ฤ•
ฤ–
ฤ—
ฤ˜
ฤ™
ฤš
ฤ›
ฤœ
ฤ
ฤž
ฤŸ
ฤ 
ฤก
ฤข
ฤฃ
ฤค
ฤฅ
ฤฆ
ฤง
ฤจ
ฤฉ
ฤช
ฤซ
ฤฌ
ฤญ
ฤฎ
ฤฏ
ฤฐ
ฤฑ
ฤฒ
ฤณ
ฤด
ฤต
ฤถ
ฤท
ฤธ
ฤน
ฤบ
ฤป
ฤผ
ฤฝ
ฤพ
ฤฟ
ล€
ล
ล‚
ลƒ
ล„
ล…
ล†
ล‡
ลˆ
ลŠ
ล‹
ลŒ
ล
ลŽ
ล
ล
ล‘
ล’
ล“
ล”
ล•
ล–
ล—
ล˜
ล™
ลš
ล›
ลœ
ล
ลž
ลŸ
ล 
ลก
ลข
ลฃ
ลค
ลฅ
ลฆ
ลง
ลจ
ลฉ
ลช
ลซ
ลฌ
ลญ
ลฎ
ลฏ
ลฐ
ลฑ
ลฒ
ลณ
ลด
ลต
ลถ
ลท
ลธ
ลน
ลบ
ลป
ลผ
ลฝ
ลพ
Latin Extended-B
ฦ
ฦ’
ศ˜
ศ™
ศš
ศ›
ศฒ
ศณ
ศท
IPA Extensions
ษ™
Spacing Modifier Letters
ห†
ห‡
ห˜
ห™
หš
ห›
หœ
ห
Thai
เธฟ
Latin Extended Additional
แธ‚
แธƒ
แธŠ
แธ‹
แธž
แธŸ
แน€
แน
แน–
แน—
แนช
แนซ
แบ€
แบ
แบ‚
แบƒ
แบ„
แบ…
แบž
แปฒ
แปณ
General Punctuation
โ€‚
โ€ƒ
โ€„
โ€…
โ€†
โ€‡
โ€ˆ
โ€‰
โ€Š
โ€‹
โ€’
โ€“
โ€”
โ€•
โ€–
โ€˜
โ€™
โ€š
โ€›
โ€œ
โ€
โ€ž
โ€Ÿ
โ€ 
โ€ก
โ€ข
โ€ฆ
โ€ฐ
โ€ฒ
โ€ณ
โ€ด
โ€น
โ€บ
โ€ฝ
โ„
Superscripts and Subscripts
โฐ
โด
โต
โถ
โท
โธ
โน
โบ
โป
โผ
โฝ
โพ
โ‚€
โ‚
โ‚‚
โ‚ƒ
โ‚„
โ‚…
โ‚†
โ‚‡
โ‚ˆ
โ‚‰
โ‚Š
โ‚‹
โ‚Œ
โ‚
โ‚Ž
Currency Symbols
โ‚ก
โ‚ข
โ‚ฃ
โ‚ค
โ‚ฆ
โ‚จ
โ‚ฉ
โ‚ช
โ‚ซ
โ‚ฌ
โ‚ญ
โ‚ฑ
โ‚ฒ
โ‚ด
โ‚ต
โ‚ผ
Letterlike Symbols
โ„“
โ„–
โ„ 
โ„ข
โ„ฎ
Number Forms
โ…“
โ…”
โ…•
โ…–
โ…—
โ…˜
โ…™
โ…š
โ…›
โ…œ
โ…
โ…ž
โ…Ÿ
Arrows
โ†
โ†‘
โ†’
โ†“
โ†–
โ†—
โ†˜
โ†™
Mathematical Operators
โˆ‚
โˆ†
โˆ
โˆ‘
โˆ’
โˆš
โˆž
โˆซ
โ‰ˆ
โ‰ 
โ‰ก
โ‰ค
โ‰ฅ
โŠ 
Miscellaneous Technical
โŒ‚
Geometric Shapes
โ– 
โ–ก
โ–ช
โ–ซ
โ–ฒ
โ–บ
โ–ผ
โ—„
โ—Š
โ—‹
โ—
โ—ข
โ—ฃ
โ—ค
โ—ฅ
Miscellaneous Symbols
โ˜…
โ˜’
โ˜ผ
โ˜พ
โ™ 
โ™ฃ
โ™ฅ
โ™ฆ
โ™ฉ
โ™ญ
โ™ฎ
โ™ฏ
โ™ป
โ™ผ
โ™ฝ
โšœ
โšช
โšซ
CJK Symbols and Punctuation
ใ€ˆ
ใ€‰
Alphabetic Presentation Forms
๏ฌ
๏ฌ‚
Miscellaneous Symbols and Pictographs
๐Ÿ
Supplementary Private Use Area-B
๔€€Œ
๔€€
๔€€œ
๔€€
๔€€ซ
๔€€ฌ
๔€‚
๔€ƒ
๔€Š
๔€œ
๔€
๔€ฐ
๔€‚ƒ
๔€‚„
๔€‚Ž
๔€‚™
๔€‚š
๔€‚ฃ
๔€‚ฅ
๔€‚ฆ
๔€‚จ
๔€‚ช
๔€‚ฌ
๔€‚ธ
๔€‚น
๔€ƒ‹
๔€ƒŒ
๔€ƒค
๔€ƒฆ
๔€ƒฏ
๔€ƒฐ
๔€ƒบ
๔€ƒฝ
๔€„€
๔€„…
๔€„‡
๔€„Œ
๔€„’
๔€„“
๔€„”
๔€„•
๔€„–
๔€„—
๔€„˜
๔€„™
๔€„›
๔€„
๔€„Ÿ
๔€„ 
๔€„ก
๔€„บ
๔€…
๔€…„
๔€…ˆ
๔€…
๔€…“
๔€…™
๔€…Ÿ
๔€…ญ
๔€…ฐ
๔€…ณ
๔€…ด
๔€…ถ
๔€†“
๔€†
๔€†ฅ
๔€†จ
๔€†ฌ
๔€‡…
๔€‡‡
๔€‡‘
๔€‡’
๔€ˆŒ
๔€ˆŸ
๔€ˆณ
๔€‰„
๔€‰˜
๔€‰ฑ
๔€Š„
๔€Š—
๔€Šก
๔€Šค
๔€Šฝ
๔€‹Ž
๔€‹“
๔€‹•
๔€‹—
๔€‹™
๔€‹š
๔€‹ซ
๔€‹ฑ
๔€‹บ
๔€ŒŒ
๔€Œ’
๔€–
๔€›
๔€ฒ
๔€ต
๔€ถ
๔€ฝ
๔€Ž€
๔€Ž™
๔€Žฐ
๔€Žณ
๔€ฐ
๔€€
๔€‘
๔€œ
๔€ซ
๔€ฑ
๔€ณ
๔€‘Œ
๔€‘
๔€‘
๔€‘
๔€‘’
๔€‘“
๔€‘•
๔€‘–
๔€‘ฅ
๔€‘ฌ
๔€‘ท
๔€‘ฝ
๔€’€
๔€’‚
๔€’”
๔€’
๔€’ค
๔€’ฒ
๔€’ฟ
๔€“ƒ
๔€“‰
๔€“–
๔€“ค
๔€“ฌ
๔€“ฏ
๔€“ฐ
๔€“ฒ
๔€“ณ
๔€“ผ
๔€”„
๔€”‹
๔€”—
๔€”ฑ
๔€•‚
๔€•บ
๔€–Š
๔€–
๔€–ก
๔€–ง
๔€—Š
๔€—ง
๔€—ช
๔€—ฒ
๔€—ท
๔€˜
๔€˜–
๔€˜ก
๔€˜ญ
๔€™
๔€™„
๔€™š
๔€™ฌ
๔€šŽ
๔€š•
๔€šœ
๔€šง
๔€šต
๔€›„
๔€›Ž
๔€›‘
๔€›–
๔€›ž
๔€›ฅ
๔€›จ
๔€œ‚
๔€œ„
๔€œ…
๔€œ†
๔€œ
๔€œŸ
๔€œฉ
๔€œณ
๔€œท
๔€œธ
๔€œน
๔€œป
๔€œผ
๔€œฝ
๔€
๔€
๔€Ž
๔€
๔€ก
๔€ด
๔€บ
๔€ž—
๔€žค
๔€žฑ
๔€Ÿ‚
๔€Ÿ™
๔€Ÿข
๔€Ÿญ
๔€Ÿฑ
๔€Ÿด
๔€Ÿท
๔€Ÿบ
๔€Ÿผ
๔€Ÿฟ
๔€ …
๔€ ‰
๔€ Œ
๔€ ค
๔€ ซ
๔€ ฎ
๔€ก…
๔€กˆ
๔€กบ
๔€กฝ
๔€ข
๔€ข…
๔€ข‰
๔€ขŒ
๔€ข‘
๔€ข•
๔€ขš
๔€ข
๔€ขด
๔€ขต
๔€ขถ
๔€ขธ
๔€ขผ
๔€ฃ…
๔€ฃ‘
๔€ฃ”
๔€ฃถ
๔€ฃพ
๔€ค…
๔€ค
๔€ค˜
๔€คจ
๔€คฏ
๔€คธ
๔€ฅ
๔€ฅŽ
๔€ฆ–
๔€ฆ
๔€ฆฃ
๔€ฆด
๔€ง‡
๔€ง
๔€ง˜
๔€ง 
๔€งจ
๔€งธ
๔€จ‡
๔€จˆ
๔€จ’
๔€จ“
๔€จš
๔€จ›
๔€จฃ
๔€จค
๔€จต
๔€จถ
๔€จป
๔€จฝ
๔€ฉ‰
๔€ฉŒ
๔€ฉŽ
๔€ฉ
๔€ฉ–
๔€ฉš
๔€ซ‘
๔€ซ’